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The present paper directly extends from [1 and 2], and is devoted to the study of qualita-
tive singularities of the flow of a viscoplastic medium in cylindrical pipes with arbitrary
cross-section under the effect of a constant pressure drop at the ends of the pipe.

The method of qualitative analysis of the motion utilized herein permits obtaining a glo-
bal condition for the existence of stagnant zones, which is connected with the configuration
of the pipe cross~section, and refinement of the location of the dead zones in a number of
cases.

Moreover, a more accurate estimate for the size of the flow nuclei is obtained. Namely,
in the case of a simply connected cross-section each nucleus contains a circle of radius
greater than 7, /c, where the width of the flow nucleus is exactly equal to Top/c for the case
of flow in a plane-parallel gap.

The results obtained rely on the following lemma.

Lemma. If a continuously differentiable function u (%, y) is defined in an open doubly
tclt:nnected domain @ with inner boundary I', and outer boundary Iy, when ulro =0, uh—.l = 1,

en

S|vu|d0)>i¥fmesl‘ 5]

w
where the right-hand side of (1) is the lower bound of the lengths of closed curves I in w,
which are homotopic to the boundaries I'g, and I";.(*)

Proof. Evidently it is sufficient to establish the inequality (1) on continuously differen-
tiable functions in @, which have no local maxima and minima. It follows from the Sard the-
orem [3] that a set of measure zero, of values of the function u (x, y) may be removed such
that the remaining values u = p correspond to level lines I, in whose neighborhood O(I"p)
local coordinates may be introduced by selecting the arclength along Fp as one coordinate
s, and the normal to as the other n (the positive direction of the normal corresponds to
growth of the function u (x, y)).

Let us consider the domain O, = O (p, p + Ap) C O (T',) included between the level
lines l"p, I‘p+Ap, such that

dedy = 1 (s, n) dsdn, | I(s, n)—1] <e B Oy
Then
S|vu|dm>(1——a)ApmesI‘p (2)
O,

Evidently, for any € > 0 a finite sequence p,(i = 0, 1,..., 22 (2)) may be selected such

that p, is a noncritical value for u(x, y) in the domain

0y = O (pz, P + Apg), Apai = paiyr — Pat
the inequality (2) is satisfied, and

*) We shall designate two closed continuous curves Iy , I';, lying in @, as homotopic to
each other if one contour can go over into the other by a continuous deformation in the
domain w.
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n{e)
3 Bpy>1—e
. 0
Evidently nte) ate)
S{vuldm;az S | vuido> (1 —¢&) ZApzimesI‘pM (3)
@ [ A 0

Let us consider y(*) homotopic to Iy in @, which has least length among all closed
curves homotopic to I, in @. Evidently the contour y coincides with ', ifI'; is convex; if
Fo is not convex, then ¥ coincides with the convex shell Pl . In the general case, the con-
tour y is a segment tangent to the curves I}, I} (Fig. 1) in the neighborhood of each point

0{ @We
It follows from the inequality (3) that
S[vuldm>(1-a)5mesy (4)
Since @ is arbi!rzry, the inequality (4) is equivalent to the in-
7 7 equality (1).
Fig. 1 Let us note that the inequality (1) is exact. Indeed, it is possi~
ble to construct a sequence of continuously differentiable fanc-
tions Uy (%, ¥)s Un|p, = 0s un |p, = 1, which converges to the characteristic fanction of

the domain bounded by the contour y, and such that

lim S jvu,|de =mesy
Rew OO Pt

Let us consider the problem of stationary motion of a viscoplastic medium in a cylindri-
cal pipe under the effect of a pressure gradient. Let @ denote the pipe cross-section, Let
I" be the boundary of w. For simplicity, let us assume that @ is a simply-connected domain.
Stationary motion is characterized by the velocity distribution u (%, y) in the domain . Ac~
cording to [1], the true motion is separated out of all those kinematically possible by the
condition that the functional

J(v):S{—%—;vuP%rg{vv(-—cv}dm, vlp=0 (5)

(4

reaches its minimum. All velocity distributions v (x, y) belonging to the space ¥,(}(w)
(see [4]), and satisfying the condition v| = 0 are kinematically possible. The existence
and uniqueness of the velocity distribution u (x, y) minimizing (5), were proved in [1]. This
distribution u (%, y) belongs to the space W,{1)(w) and is a continuous function, where
u(x, y) is positive, has no local minima, and a finite number of local maxima.

Let us consider the open set @ , consisting of points of the domain ® such that u{x, y)
> p. The set  , is the union of a fnite number of open simply connected domains o’; o, =

= UI"(")mp", nf'here evidently exists a sufficiently small number Ap such that

np)=n(p+ Ap), O pp = Uln(p)m:u&p* m;wim - mpv

We shall designate the boundary I of the domain @y the level line of the function u (%, y)
Evidently I, = U;"®T,". Let_®; ,, 4, denote the set ©) ,, 0, =0," /@) A,
" Theorem 1. The level lines Fp of the minimizing function are finite

v L v {6)
mesT " < T mes &,
Proof. Let us consider the function u *(x, y) _
u* (x, y) = u {2, v ecmn (7, ¥) € 0,”
u* (x, y) = p, ecun (2, Y) € O piap

u* (z, y) = u (2, y) — Ap, e (2, y) € Wppp
Evidently J (u*)> J (u), from which it directly follows that

*) A closed curve which is mutually onesto-one and mutuelly continucus image of a circle
is called a contour.
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TOS lvuldmgcznkpmesm‘,“

,prAp
Utilizing Lemma, we find .
‘ mes T;-P+AP<Tomes @, (¥))]
Here'l’v, Apis the contour introduced in Lemma, which lies in the domain (D;'NA,D- Fur-
thermore,ioeiAz‘ D Opppy if Ap,< Ap2 and lim @7, p, = ©," as Ap - 0. It hence follows
that if I, Is infinite, then lim mes 7, ,,», = ° as Ap + 0, which contradicts the inequal-
ity (7). 'f'herefore, inequality (6) is satisfied and T is finite. The theorem is proved.
Theorem 2. If the boundary [ of the domain @ and the number ¢ in the functional (5) are

such that mes @ mes ' \~1
To ( )

-1
mes T’ ) >e>To <w51C1:[‘)° mes [’
where '’ is the boundary of a subdomain ¢°, then the flow in the domain @ exists and has
stagnant zones, i.e., domains adjoining the boundary I, where u = 0,

Proof. The existence of the flow follows from the necessary and sufficient condition for-
mulated in [1].

Let us prove the existence of the stagnant zones. Let us assume the opposite, then I
is the level line 4 = 0, and it follows from Theorem 1 that mes I' < (¢/ 7, ) mes @, which
contradicts the assumption of Theorem 2.

The physical meaning of the assertion in Theorem 2 is quite simple. In fact, Theorem 2
permits the conclusion that for some sufficiently small ¢ the boundary of the domain @ can
not be a line bounding the flow domain, which always holds when the contact contour does
not coincide with the boundary of the domain . The case of flow in a pipe with square
cross-section [1] might be mentioned as a specific example.

Theorem 3. The flow nucleus A (*) with boundary a is such that

mes a < —Tc— mes A (8)
and contains a circle of radius 0 y
21, dnvg? \L
R>— [1+(1_c2mesm> :‘

Proof. The inequali (8% follows directly from Theorem 1. Let us estimate the magnitude
of R, Burago and Zalgaller [5] established an inequality which has the form
mes 4 R mesa — 7 R?

when 4 is a plane simply connected domain with boundary a and internal radius R (**).

Hence, utilizing the inequality (9), we find

2 mes 4 271y ARTe® \Url_ g
R>mesa+ V(mesa) —4nmes A~ ¢ V (1 ﬂmesm) ., ¢

Let us note that upper and lower estimates for R were obtained in [1]. The upper estimate
R 2Ty/c was exact, the lower estimates were rough. The lower estimate (9) is apparently
almost exact since R = 7,/c if @ is a strip; let us note that the radicand in (9) is positive
when a flow exists. The theorem is proved. The expounded methods are also applicable if
the flow nuclei have a multiconnected configuration; however, the estimates obtained here
are essentially rougher.

‘Theorem 1 also permits mention of the following property of the nucleus. For each nucle-
us A of boundary a

To es a = c mes 4
and for any subdomain A”in A with boundary a”

Tomes a’ > ¢ mes A’

The last inequality shows, for example, that the nucleus can not have angular points
directed toward the flow. Such an impossible nucleus configuration is shown in Fig. 2.
Let us note yet another qualitative peculiarity of stagnant zones. The closed curves K ,,

*) An inner subdomain of @, in which u(x, y) is constant and achieves its local maximum
is called the flow nuclens {see [2]).
**) A number R such that R = sup p(x, a), where p(x, a) is the distance from a point x of
the domain A4 to the boundary a, is called the internal radius of the domain 4.
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defined by the condition (mes (},/mes K,) = sup (mes @ ’/mes 1'*),
where (1, is a domain in @), bounded by the curve K 5 '’ is the boundary
of w”, were introduced in [1]. Let us assume that there exists just one
closed curve K, which yields the upper bound of the ratio mes w /mes
I" then if the motion exists, the stagnant zone is outside the domain (),

w . bounded by the curve K. Let us first prove the following assertion.
Theorem 4. Let
; | . . .
¥ Ji(u)=g{7-]vu|~+1’0]vu|—ciu}dm, u|I.=0, i=1,2
[0
Fig. 2 Ifu; is a function winimizing J, () and ¢, > ¢, then u; Ju,, i.e.

as the pressure gradient increases, the velocity of the motion can not decrease at any point
of the domain w.
Proof. Evidently the chain of inequalities
Iy (uy) < J1 () T (ug) T3 (1)
holds.
Let us assume the opposite. Let uy>u,in the domain @ * and u,=u, on I'*, " * is the
boundary of @ *. Evidently an analogous chain of inequalities holds
J1* (ua) U™ (u2) SU2* () T2 ()

Ji*(u)-S{—g-lvu]2+10[vu|—ciu}dm, i=1,2
(l).

But then
Vi rvupanivalido < § B lowsp + w0l vie) e —un) do
w.

€

S{%‘I Vu2|2+'ro|vu2|}dm< S {%|vu1|2+ro|vu1|-—02(u1—-u2)} do

* *
Combining the last two inequalities we find

14 < A4, A= S (ua — 1) do >0

*

[

Since A > 0, then ¢ y§ ¢,, which contradicts the condition of the theorem.

Theorem 5. If just one c{osed curve K bounding the domain {} and yielding the upper
bound of the ratio mes w’/mes I’ exists, where 0’ is a subdomain of @ with boundary | A
and if the motion of the medium exists in @ then the stagnant zones of the motion of the vis-
coplastic medium are outside the domain ().

Proof. Let us consider the sequence of functionals

; .
Ji(u)=S{T'LIVMI“+'|70]VuI——ciu}d(D, fulp=0

Here the numbers ¢;, by decreasing, tend to the number c* = 7, mes K/mes (}, the num-

bers y; -+ 0, such that max ud‘ = 1, where u, is the function minimizing J; (u). It is easy to

see that J (u;) » 0, i » o and therefore

S%,lvui|‘3dm—>0, 0<3 {Tol Vu;| —c*u}do—~ 0 (i —»oo)
w . w
Let us consider the subdomains ®_? in @ (see Theorem 1), which are representable as
@1 = U 1n(s::, i)mpi, v
)

Let 1":;"' denote the boundary of u):"'. It follows from Theorem 1 that
. c* .
2 mesT " ¥ e 2 mes " 4 & (©)
) )
Here e, + 0 agi +oo.
Let us rewrite inequality (9) as

iv i [meso’ mes o'\"1
Z mes T >V gmes r, [mes % <sup oS l") } + e (10)
3 P
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From the inequality (10) it follows that

S ju,—8(z,y)|do—0 an

w

Here A(x, y) is the characteristic function of (). Let us assume that a certain function

u; (%, y) has a stagnant zone intersecting the domain (). It follows from Theorem 4 that the
functions u, (%, y), for k> i, have stagnant zones containing the stagnant zone of the func-
tion u,; (x, yk) Therefore, (11) is impossible. The obtained contradiction proved Theorem 5.

3.
4.
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