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The present paper directly extends from [l and 21, and is devoted to the study of qualita- 
tive singularities of the flow of a viscoplastic medium in cylindrical pipes with arbitrary 
cross-section under the effect of a constant pressure drop at the ends of the pipe. 

The method of qualitative analysis of the motion utilized herein permits obtaining a glo- 
bal condition for the existence of stagnant zones, which is connected with the configuration 
of the pipe cross-section, and refinement of the location of the dead zones in a number of 
cases. 

Moreover, a more accurate estimate for the size of the flow nuclei is obtained. Namely, 
in the case of a simply connected cross-section each nucleus contains a circle of radius 
greater than To/c, where the width of the flow nucleus is exactly equal to ~o/c for the case 
of flow in a plane-parallel gap. 

The results obtained rely on the following lemma. 
Lemma. If a continuously differentiable function u (z, y) is defined in au open doubly 

connected domain o with inner boundary rtand outer boundary ro, when I+. = 0, ujr, = 1, 
then 

(1) 

where the right-hand side of (1) is the lower bound of the lengths of closed curves r in o, 

which are homotopic to the boundaries ro, and rt.(*) 
Proof. Evidently it is sufficient to establish the inequality (1) on continuously differen- 

tiable functions in w, which have no local maxima and minima. It follows from the Sard the- 
orem [3] that a set of measure zero, of valuea of the function s (z, y) may be removed such 
that the remaining values II = p correspond to level lines ro, in whose neighborhood O(r,) 
local coordinates ma 
I, and the normal to F 

be introduced by selecting the arclength along rp as one coordinate 
p as the other n (the positive direction of the normal corresponds to 

growth of the function I( (z, y)). 
Let us consider the domain O1 = 0 (p, p + Ap) C 0 (I’,,),included between the level 

lines Pp, Pp+ap, such that 

Then 
dxdy=Z(s, n) dsdn, IZ(s, n)-11 <e B 0, 

s 
1 vujdo>(l-e)ApmesI’, (2) 

Evidently, for any e > 0 a finite sequence p,(i i= 0, l,..., Bt (8)) may be selected such 

that p, is a noncritical value for u (x, y) in the domain 

Oi = 0 (pail pai + Apri), Apzt = ~23+1 - PS~ 

the inequality (2) is satisfied, and 

*) We shall designate two closed continuous curves rt ) rz, lying in o, as homotopic to 
each other if one contour can go over into the other by a continuous deformation in the 
domain o. 
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Evidently 

n(c) 

x Ap,i>i-- 
0 

Let us consider y(*) homotopic to r, in o, which has l&t length amon 
curves homotopic to rp in 6~. Evidentiy the contour y cofncfdes with rt if lg 

all closed 
t Is convcr; if 

r, is not convex, then y coincides with the convex shell rt. In tbe general case, the con- 
tOU1 y i8 8 segment tangent t0 the CUTveS rt , r, (Fig. 1) in tbe nei~bo~ood of each point 

Fig. 1 

ofw. 
It follows from the inequality (3) that 

s 
~vuIdw),(1-e)*mes~ (4) 

Since TV is arbi&y, the inequality (4) is equivalent to the in- 
equality (1). 

Let us note that the inequality (1) is exact. Indeed, it is poasi- 
ble to construct 8 sequence of continuouely differentiable func- 

tiOiW Un (ES ?/)I $2 fro = 0, Un Ir, = f, which converges to the characteristic function of 
tbe domain bounded by the contour y, and such that 

lim /vu,Idw=mesr 
?a-+03 s 

Let us consider the problem of sta%onary motion of a viscoplastic medium in a cylindri- 
cal pipe under the effect of a prtaumre gradient. Let w denote the pipe cross-section. Let 
r be the boundary of 0. For sfmplicity, let us assume that o is a simply-connected domain. 
Stationary motion is characterized by the velocity diatrfbatfon u (x, y) in the domain o. Ac- 
cording to [l], the true motion is aepareted out of all those kinematic8lLy possible by the 
condition that the functional 

J(v) = vup+ZoIv”I-cv vlr=O (5) 

reaches its minimum. AI1 v:locity distributions of%, y) belonging to tbs space W (lj(~) 
(see f4] ), and S&tfSfyfng the condition t& = 0 8re kiuematically possible. The e a StColCe 
and uniqueness of the velocity distribution u (x, y) minimizing (51, were proved in [I]. This 
distribution Y (r, y) belongs to the apace F, (t)(oj) and is 8 conti7.tuous function, where 
u (x, y) is positive, has no local minima, and a finite number of local maxima. 

Let us consider the open set ok consisting of points of the domain w such that u (u, y) 
f!* note number of open simply connected domains wpv; coo = 

evidently exists a sufficiently small number Ap such that 

n (p) = n (P -I- ApI, Op+Ap = UI~@)$+A~~ $+A~ C %” 
we shafi designate the boundary re of the domain op the level line of the function P (u, y). 
Evidently P, = U1n(P)FoV. Let #p,p+,&p denote the set @E,p+ap = @p”/wi+&,. 

Fltronm 1. The Ievel lines rp of the minimizing function are finite 

(6) 

Proof. Let us consider tbe function u *(r, y) 

u* (2, Y) = u (z. Y), ecml (2, y) ZW% 

u* (2, Y) = P. f?cJIn (2, !/)E $,,+A, 

u* (2, !I) = ~(2, Y) - Ap, ecnn (2, Y) E~$+A~ 

Evidently .f (u *) > J (u), from which it directly follows tbat 

*) A closed curve which is mutually one-to-one and mutually continuous image of a circle 
is caLled a contour. 
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.a* 
P, P+AP 

Utilixing Lemma, we find 
C 

mesri p+3p<- meso,” 
'50 

Here? is the contour introduced in Lemma,vwhicb lie? in the domain @~,P+A,I. Fur- 
thermore ‘;“+“,’ 2 0” A ifApI<Ap2andlim~, ApBop 
that if r’v 1p,’ i%nitey&& lim mes 7;: P+&, 
ity (7). +h 

=ooash - 
as Ap + 0. It hence follows 

p + 0, which contradicts the inequal- 
ere ore, f inequality (6) is satisfied and I’; is finite. The theorem is proved. 

J’hasmm 2. If the boundary r of the domain o and the number c in the functional (5) are 

such that 

where r’ is the boundary of a subdomain o’, then the flow in the domain o exists and has 
stagnant genes, (i.e., domains adjoining the boundary r, where u xx 0. 

Proof. The existence of the flow follows from the necessary and sufficient condition for- 
mulated in [l]. 

Let us prove the existence of the stagnant zones. Let us assume the opposite, then r 
is the level line I( = 0, and it follows from Theorem 1 that mes r& (c/r0 ) mes o , which 
contradicts the assumption of Theorem 2. 

The physical meaning of the assertion in Theorem 2 is quite simple. In fact, Theorem 2 
permits the conclusion that for some sufficiently small c the boundary of the domain o can 
not be a line bounding the flow domain, which always holds when the contact contour does 
not coincide with the boundary of the domain o. The case of flow in a pipe with square 
cross-section [l] might be mentioned as a specific example. 

Thronnr 3. The flow nucleus A (‘1 with boundary a is such that 

031 

and contains a circle of radius 

ali Proof. The inep 1 1 ] 
of R. Uurago and 

(8 follows directly from Theorem 1. Let us estimate the magnitude 
alga ler 5 established an inequality which has the form 

mesA <I? mesa - nRP 
when A is a plane simply connected domain with boundary o and internal radius R (**). 

Hence, utilizing the inequality (q), we find 

R> 
2mes A- 

mes a + V(mes a)2 - 4n mes A 
Let us note that upper and iower estimates for R were obtained in [l]. The upper estimate 

R,( 27o/c was exact, the lower estimates were rough. The lower estimate (9) is apparently 
almost exact since R = T /c 
when a flow exists. The % 

if w is a strip; let us note that the radicand in (9) is positive 
eorem is proved. The expounded methods are also applicable if 

the flow nuclei have a multiconnected configuration; however, the estimates obtained here 
are essentially rougher. 

Theorem 1 also permits mention of the following property of the nucleus. For each nucle- 
us A of boundary a 

~0 mes a = c mes A 
and for any subdomain A’in A with boundary a’ 

TO mes a’ > c mes A’ 

The last inequality shows, for example, that the nucleus can not have angular points 
directed toward the flow. Such an impossible nucleus configuration is shown in Fig. 2. 

Let us note yet another qualitative peculiarity of stagnant zones. The closed curves K, 

*I An inner subdomain of o, in which Y (x, y) is constant and achieves its local maximum 
is called the flow nucleus (see [2] ). 

**) A number R such that R = sup p(x, o). where p(z, 01 is the distance from a point x of 
the domain A to the boundary a, is called tbe internal radius of the domain A. 
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0; 0 

V 

A a 

f 

defined by the condition (mes no/me, K,) = sup (mes o’/mes r’), 
where s1, is a domain in o), hounded by the curve KG r’is the boundary 
ore: were introduced in [l]. Let us assume that there exists just one 
closed curve K, which yields the upper bound of the ratio mes w’/mes 
r’; then if the motion exists, the stagnant zone is outside the domain Q, 
bounded by the curve K. Let us first prove the following assertion. 

Theorem 4. Let 

Ji(U)=s{+, vuI”-+roI oLLI-CCIU)dO, U lr =Q, i=1,2 

0 
Fig. 2 If s, is a function r,rinimizing 1, (u) and ct >, c,, then or >/ n2, i.e. 

as the pressure gradient increases, the velocity of the motion can not decrease at any point 
of the domain o. 

Proof. Evidently the chain of inequalities 

Jl (4 d Jl (%z) d J2 (4 d Ja (a 

holds. 
Let US assume the opposite. Let I( 2 > u t in the domain o * and u 2 = II t on r l , I? l is the 

boundary of o l . Evidently an analogous chain of inequalities holds 

Jl* (4 d Jl* (u2) g JL* (112) 6 Jz* (Ul) 

J,*(u)- 1 {~Ivu,“+to,vu,-CiU}dO, i=l, 2 

But then 
3 

\I +I do 

0. 

& - OS 
Combining the last two inequalities we find 

Cl‘4 d cd, ‘4 zzz 
s 

(u2 - q) do > 0 

6l* 

Since A > 0, then c r\< c 
P’ 

which contradicts the condition of the theorem. 
Theorem 5. If just one c osed curve K bounding the domain a and yielding the upper 

bound of the ratio mea o_r’/mes r’exists, where o’is a subdomain of o with boundary r’, 
and if the motion of the medium exists in o then the stagnant zones of the motion of the vis- 
coplastic medium are outside the domain n. 

Proof. Let us consider the sequence of functionals 

Ji (u) = I u IF = 0 

Here the nnmbers c,, by decreasing, tend to the number c* = T mea K/mes Q the num- 
bers CL, + 0, snch that max u = 1, where n, is the function minimi%ng Ii (I(). It iieasy to 
see that I (ui) -I 0, i + 0~ an d therefore 

s v ui 12 do --f 0, 

Let us cotaider the subdomains 

’ o< I {to I vui~-c*ui}do-tO (i -00) 

Let I$‘” denote the boundary of 

w 

oAi in w (see Theorem l), which are representable as 

d*‘.It follows from Theorem 1 that 
o I 

P 
Here at+Oasi+w. 
Let us rewrite inequality (9) as 

(9) 

YJ mes rPis ” < 2 mes Fe’, ” 
[ 

mes rirPz* ” 

mes rPip ” t 

mes 0’ -l 
sup - 

mes r’ ) 1 + ‘i P P (10) 
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From the inequality (10) it follows that 
3 s I ui - 8 (2, !I) 1 do -+ 0 

w 
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(11) 

Here 8(.z, y) is the characteristic function of a. Let us assume that a certain function 
u, (x, y) has a stagnant zone intersecting the domain n. It follows from Theorem 4 that the 
functions s 
tion u, (z, y ‘, 

(x, yl, fork > i, have stagnant zones containing the stagnant zone of the fttnc- 
. Therefore, (11) is impossible. The obtained contradiction proved Theorem 5. 
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